Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(40): 17125-17135, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34635906

RESUMO

A metal-insulator transition is observed in spin-orbit-coupled IrO2 thin films upon reduction of the film thickness. In the epitaxially grown samples, the critical thickness (t ∼ 1.5-2.2 nm) is found to depend on growth orientation (001), (100) or (110). Interestingly from the applied point of view, the insulating behavior is found even in polycrystalline ultrathin films. By analyzing the experimental electrical response with various theoretical models, we find good fits to the Efros-Shklovskii-VRH and the Arrhenius-type behaviors, which suggests an important role of electron correlations in determining the electrical properties of IrO2. Our magnetic measurements also point to a significant role of magnetic order. Altogether, our results would point to a mixed Slater- and Mott-type of insulator.

2.
Phys Chem Chem Phys ; 16(34): 18301-10, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25057849

RESUMO

To determine with precision how Bi atoms are distributed in Bi-doped iron oxide nanoparticles their structural characterization has been carried out by X-ray absorption spectroscopy (XAS) recorded at the K edge of Fe and at the L3 edge of Bi. The inorganic nanoparticles are nominally hybrid structures integrating an iron oxide core and a bismuth oxide shell. Fe K-edge XAS indicates the formation of a structurally ordered, non-stoichiometric magnetite (Fe3-δO4) phase for all the nanoparticles. The XAS spectra show that, in the samples synthesized by precipitation in aqueous media and laser pyrolysis, the Bi atoms neither enter into the iron oxide spinel lattice nor form any other mixed Bi-Fe oxides. No modification of the local structure around the Fe atoms induced by the Bi atoms is observed at the Fe K edge. In addition, contrary to expectations, our results indicate that the Bi atoms do not form a well-defined Bi oxide structure. The XAS study at the Bi L3 edge indicates that the environment around Bi atoms is highly disordered and only a first oxygen coordination shell is observed. Indefinite [BiO6-x(OH)x] units (isolated or aggregated forming tiny amorphous clusters) bonded through hydroxyl bridges to the nanoparticle, rather than a well defined Bi2O3 shell, surround the nanoparticle. On the other hand, the XAS study indicates that, in the samples synthesized by thermal decomposition, the Bi atoms are embedded in a longer range ordered structure showing the first and second neighbors.


Assuntos
Bismuto/química , Meios de Contraste/síntese química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Modelos Químicos , Simulação por Computador , Teste de Materiais , Modelos Moleculares , Conformação Molecular , Tamanho da Partícula
3.
J Phys Condens Matter ; 25(3): 035604, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23238162

RESUMO

The magnetic polarization of the Lu 5d states through the Ho(1-x)Lu(x)(Fe(1-y)Al(y))(2) series has been studied by means of x-ray magnetic circular dichroism. A combined study of the dichroic signals performed at the Fe K-, Ho L(2)- and Lu L(2,3)-edges gives a complete picture of the polarization scheme at the conduction band. The results show that in the presence of competing localized magnetic moments, µ(Fe)(3d) and µ(Ho)(4f), the dichroic signal at the Lu site is mainly due to the Fe atoms, the effect of the magnetic rare-earth being negligible. Estimation of the spin and orbital components of the Lu(5d) induced magnetic moment have been obtained by applying the magneto-optical sum rules derived for x-ray magnetic circular dichroism.


Assuntos
Alumínio/química , Hólmio/química , Ferro/química , Lutécio/química , Magnetismo , Dicroísmo Circular , Raios X
4.
Nanotechnology ; 23(2): 025705, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22166763

RESUMO

The role of the interface in mediating interparticle magnetic interactions has been analysed in Fe50Ag50 and Fe55Ag45 granular thin films deposited by the pulsed laser deposition technique (PLD). These samples are composed of crystalline bcc Fe (2­4 nm) nanoparticles and fcc Ag (10­12 nm) nanoparticles, separated by an amorphous Fe50Ag50 interface, occupying around 20% of the sample volume, as determined by x-ray diffraction (XRD), x-ray absorption spectroscopy (XAS), and high resolution transmission electron microscopy (HRTEM). Interfacial magnetic coupling between Fe nanoparticles is studied by dc magnetization and x-ray magnetic circular dichroism (XMCD) measurements at the Fe K and Ag L2,3 edges. This paper reveals that these thin films present two magnetic transitions, at low and high temperatures, which are strongly related to the magnetic state of the amorphous interface, which acts as a barrier for interparticle magnetic coupling.

5.
J Nanosci Nanotechnol ; 12(11): 8619-23, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23421253

RESUMO

Partially oxidized iron nanoclusters have been prepared by the gas-phase aggregation technique with typical sizes of 2-3 nm. This preparation technique has been reported to obtain clusters with interesting magnetic properties such as very large exchange bias. In this paper, a sample composition study carried out by Mössbauer and X-ray absorption spectroscopies is reported. The information reached by these techniques, which is based on the iron short range order, results to be an ideal way to have a characterization of the whole sample since the obtained data are an average over a very large amount of the clusters. In addition, our results indicate the presence of ferrihydrite, which is a compound typically ignored when studying this type of systems.


Assuntos
Cristalização/métodos , Gases/química , Ferro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Espectroscopia Fotoeletrônica/métodos , Análise Espectral/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Propriedades de Superfície
6.
Phys Rev Lett ; 105(21): 216407, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21231332

RESUMO

The electronic structure and magnetism of Ir 5d5 states in nonmetallic, weakly ferromagnetic BaIrO3 are probed with x-ray absorption techniques. Contrary to expectation, the Ir 5d orbital moment is found to be ~1.5 times larger than the spin moment. This unusual, atomiclike nature of the 5d moment is driven by a strong spin-orbit interaction in heavy Ir ions, as confirmed by the nonstatistical large branching ratio at Ir L(2,3) absorption edges. As a consequence, orbital interactions cannot be neglected when addressing the nature of magnetic ordering in BaIrO3. The local moment behavior persists even as the metallic-paramagnetic phase boundary is approached with Sr doping or applied pressure.

7.
J Nanosci Nanotechnol ; 9(11): 6434-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19908546

RESUMO

X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 x 10(-4) was found at the Au L3 edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M(S), of 0.06 emu/g(Au). SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...